Mark Ansel, PhD

Professor
Microbiology & Immunology
+1 415 476-5368

MicroRNAs, transcription factors, and epigenetic regulation shape the gene expression programs that determine cell identity and function. The Ansel lab studies how these molecular mechanisms work together to control lymphocyte development, differentiation, and function in immunity.

We use in vitro cell differentiation systems, mouse genetics, disease models, and high dimensional cellular and molecular analyses in human biospecimens to unravel the regulatory networks that underlie immunity and immune pathology, especially allergy and asthma.

Lymphocyte lineage decisions and the deployment of their effector functions are critical for the development of protective immunity against a great diversity of pathogens. However, improper or exaggerated responses underlie the pathogenesis of autoimmune diseases, chronic inflammation, allergy, and asthma. Our primary experimental system is the differentiation of helper T cells, the central coordinators of adaptive immune responses. Upon immune activation, naïve CD4+ T cells can differentiate into several different helper T cell effectors subtypes (e.g. Th1, Th2, Th17, iTreg, Tfh, etc.). These lineages are defined by their characteristic gene expression programs and mediate distinct immune functions. These gene expression programs are controlled by external factors that derive from other cells or the environment, signaling-induced and lineage-specific transcription factors, epigenetic regulation of transcriptional responses, and posttranscriptional mechanisms, including RNA-binding proteins and miRNAs. The depth of our knowledge about the networks that control helper T cells makes them an attractive model for studying basic mechanisms of gene regulation.

Active projects in the laboratory mostly focus on RNA regulation of immune cell programming. We study how individual miRNA families regulate lymphocyte differentiation and immune function, and the regulation of the miRNA pathway itself during immune responses. Naive CD4+ T cells that cannot produce any miRNAs exhibit reduced cell division and survival in response to immune stimuli. Surprisingly, they also undergo rapid unrestrained differentiation into effector cells. We have developed a screening technology that allows us to rapidly determine which specific miRNAs regulate each of these T cell behaviors, and pipelines for determining miRNA expression patterns in very small clinical samples (such as sorted T cell subsets from the airways of human asthmatic subjects, serum, sputum, and other sources of extracellular miRNAs, etc.). In addition, we discovered that T cells rapidly reset their small RNA repertoire upon activation. This process involves ubiquitination and degradation of Argonaute proteins and the release of RNAs in extracellular vesicles, but the signaling mechanisms and the fate of associated RNAs remains unknown. Activation-induced changes in regulatory RNA expression affects T cell differentiation and the development of immune effector functions.

The major research goals of our laboratory are:

1) To define the molecular mechanisms that control miRNA homeostasis and extracellular release by lymphocytes, and determine how the miRNA repertoire is so dramatically remodeled during activation.

2) To characterize the function of RBPs and individual miRNAs that regulate T cell differentiation and immune effector functions.

3) To determine how the expression and function of miRNAs contributes to the pathogenic properties of T cells and other immune cells in human asthma.

Publications

Null and missense mutations of ERI1 cause a recessive phenotypic dichotomy in humans.

American journal of human genetics

Guo L, Salian S, Xue JY, Rath N, Rousseau J, Kim H, Ehresmann S, Moosa S, Nakagawa N, Kuroda H, Clayton-Smith J, Wang J, Wang Z, Banka S, Jackson A, Zhang YM, Wei ZJ, Hüning I, Brunet T, Ohashi H, Thomas MF, Bupp C, Miyake N, Matsumoto N, Mendoza-Londono R, Costain G, Hahn G, Di Donato N, Yigit G, Yamada T, Nishimura G, Ansel KM, Wollnik B, Hrabe de Angelis M, Mégarbané A, Rosenfeld JA, Heissmeyer V, Ikegawa S, Campeau PM

Obesity alters pathology and treatment response in inflammatory disease.

Nature

Bapat SP, Whitty C, Mowery CT, Liang Y, Yoo A, Jiang Z, Peters MC, Zhang LJ, Vogel I, Zhou C, Nguyen VQ, Li Z, Chang C, Zhu WS, Hastie AT, He H, Ren X, Qiu W, Gayer SG, Liu C, Choi EJ, Fassett M, Cohen JN, Sturgill JL, Crotty Alexander LE, Suh JM, Liddle C, Atkins AR, Yu RT, Downes M, Liu S, Nikolajczyk BS, Lee IK, Guttman-Yassky E, Ansel KM, Woodruff PG, Fahy JV, Sheppard D, Gallo RL, Ye CJ, Evans RM, Zheng Y, Marson A

Impaired antibacterial immune signaling and changes in the lung microbiome precede secondary bacterial pneumonia in COVID-19.

medRxiv : the preprint server for health sciences

Tsitsiklis A, Zha BS, Byrne A, Devoe C, Levan S, Rackaityte E, Sunshine S, Mick E, Ghale R, Jauregui A, Sarma A, Neff N, Serpa PH, Deiss TJ, Kistler A, Carrillo S, Ansel KM, Leligdowicz A, Christenson S, Jones N, Wu B, Darmanis S, Matthay MA, Lynch SV, DeRisi JL, COMET Consortium+ , Hendrickson CM, Kangelaris KN, Krummel MF, Woodruff PG, Erle DJ, Rosenberg O, Calfee CS, Langelier CR

Tracheal aspirate RNA sequencing identifies distinct immunological features of COVID-19 ARDS.

Nature communications

Sarma A, Christenson SA, Byrne A, Mick E, Pisco AO, DeVoe C, Deiss T, Ghale R, Zha BS, Tsitsiklis A, Jauregui A, Moazed F, Detweiler AM, Spottiswoode N, Sinha P, Neff N, Tan M, Serpa PH, Willmore A, Ansel KM, Wilson JG, Leligdowicz A, Siegel ER, Sirota M, DeRisi JL, Matthay MA, COMET Consortium , Hendrickson CM, Kangelaris KN, Krummel MF, Woodruff PG, Erle DJ, Calfee CS, Langelier CR

Bacterial biogeography of adult airways in atopic asthma.

Microbiome

Durack J, Huang YJ, Nariya S, Christian LS, Mark Ansel K, Beigelman A, Castro M, Dyer AM, Israel E, Kraft M, Martin RJ, Mauger DT, Rosenberg SR, King TS, White SR, Denlinger LC, Holguin F, Lazarus SC, Lugogo N, Peters SP, Smith LJ, Wechsler ME, Lynch SV, Boushey HA

Discovery of stimulation-responsive immune enhancers with CRISPR activation.

Nature

Simeonov DR, Gowen BG, Boontanrart M, Roth TL, Gagnon JD, Mumbach MR, Satpathy AT, Lee Y, Bray NL, Chan AY, Lituiev DS, Nguyen ML, Gate RE, Subramaniam M, Li Z, Woo JM, Mitros T, Ray GJ, Curie GL, Naddaf N, Chu JS, Ma H, Boyer E, Van Gool F, Huang H, Liu R, Tobin VR, Schumann K, Daly MJ, Farh KK, Ansel KM, Ye CJ, Greenleaf WJ, Anderson MS, Bluestone JA, Chang HY, Corn JE, Marson A

Biogenesis, delivery, and function of extracellular RNA.

Journal of extracellular vesicles

Patton JG, Franklin JL, Weaver AM, Vickers K, Zhang B, Coffey RJ, Ansel KM, Blelloch R, Goga A, Huang B, L'Etoille N, Raffai RL, Lai CP, Krichevsky AM, Mateescu B, Greiner VJ, Hunter C, Voinnet O, McManus MT

Self-enforcing feedback activation between BCL6 and pre-B cell receptor signaling defines a distinct subtype of acute lymphoblastic leukemia.

Cancer cell

Geng H, Hurtz C, Lenz KB, Chen Z, Baumjohann D, Thompson S, Goloviznina NA, Chen WY, Huan J, LaTocha D, Ballabio E, Xiao G, Lee JW, Deucher A, Qi Z, Park E, Huang C, Nahar R, Kweon SM, Shojaee S, Chan LN, Yu J, Kornblau SM, Bijl JJ, Ye BH, Ansel KM, Paietta E, Melnick A, Hunger SP, Kurre P, Tyner JW, Loh ML, Roeder RG, Druker BJ, Burger JA, Milne TA, Chang BH, Müschen M

Airway epithelial miRNA expression is altered in asthma.

American journal of respiratory and critical care medicine

Solberg OD, Ostrin EJ, Love MI, Peng JC, Bhakta NR, Hou L, Nguyen C, Solon M, Nguyen C, Barczak AJ, Zlock LT, Blagev DP, Finkbeiner WE, Ansel KM, Arron JR, Erle DJ, Woodruff PG